宙畑 Sorabatake

機械学習の記事一覧

機械学習

【保存版】課題から探すAI・機械学習の最新事例57選

世の中の企業がどのように機械学習を活用しているのか事例を知り、業界全体や自社の目の前の業務で抱えている課題解決に活かせるかを考えるきっかけとなるよう、52種類の事例を紹介します。

機械学習

【データサイエンス入門】Pythonでテーブルデータを扱いたい人のためのライブラリまとめ

テーブルデータを扱う上で押さえておきたいPythonライブラリの基礎をご紹介します。これからPythonを学びたいという方におすすめです。

機械学習

Kaggle上位ランカーの5人に聞いた、2019年面白かったコンペ12選と論文7選

2019年も様々なデータサイエンス関連のコンペが実施され、論文が発表されました。その中でも面白かったものはどれか、5人のkagglerの方に直接お伺いしました。

機械学習

SSDを用いて飛行機の物体検出にチャレンジしてみた

衛星データに機械学習を使って何か面白いことをしてみたい、そんな方へ。物体検出を試してみませんか? この記事では衛星データを用いて飛行機の物体検出にチャレンジしてみました。

機械学習

【コード付き】画像用Transformerを利用して衛星画像の分類機械学習モデルを作成する

色々な分野で応用され始めているTransformerの簡単な解説と実際に衛星画像を利用した雲判定機械学習モデルを作成していきます。

機械学習

【コード・データ付き】学習済みモデルを利用して手軽にゴルフ場が写っているかを判定できる機械学習モデルを作成する

学習済みモデルを利用した転移学習で機械学習モデルを作成することで、手軽に画像識別予測を行うことができるます。ゴルフ場が写っているか写っていないかの分類を例にコードと合わせて解説します。

機械学習

SRCNNを用いて衛星画像の超解像にチャレンジしてみた【コード付き】

今回の記事では実際にTellusを用いて、衛星データに対して超解像をやってみようと思います。

機械学習

Kaggleランカーの9人に聞いた、2020年面白かったコンペ9選と論文9選

9名のKagglerの方にアンケートにご協力いただき、2020年に面白かったコンペと論文を教えていただきましたのでその結果を紹介します。

機械学習

Kaggleランカーの7人に聞いた、2021年面白かったコンペ7選と論文7選

7名のKagglerの方にアンケートにご協力いただき、2021年に面白かったコンペと論文を教えていただきましたのでその結果を紹介します。

機械学習

CNNを使って衛星データに雲が映っているか否か画像分類してみた

宙畑編集部による衛星データを活用していろいろ遊んでみようという連載「宇宙データ使ってみた」にて、ついに機械学習にチャレンジしてみました!

機械学習

衛星データに雲が映っているか否かの画像分類を4つの手法で精度比較してみた

機械学習、AIなど最近はよく耳にしますよね。今回は衛星データに対して、機械学習の基本的なモデルをいくつか試してみようと思います。

機械学習

【Kaggleコンペ解説連載】衛星画像による海氷と船舶の識別

データサイエンスコンペkaggleで実施された、衛星画像からの海氷と船舶抽出について、上位入賞者3名の解析手法について解説します。

機械学習

Kaggleランカーの9人に聞いた、2022年面白かったコンペ7選と論文7選

9名のKagglerの方にアンケートにご協力いただき、2022年に面白かったコンペと論文を教えていただきましたのでその結果を紹介します。

機械学習

シャープ独自開発の深層学習モデルによる衛星画像の超解像処理

超解像とは、元々の画像の解像度を擬似的に上げる技術のことです。機械学習分野における超解像は注目分野のうちの一つですが、衛星画像に超解像を適用するとどうなるのか、その技術や将来性について、シャープ株式会社研究開発事業本部 通信・映像技術研究所 第三研究室 課長・猪飼知宏さん、研究員・佐々木瑛一さんに伺ってきました。

機械学習

超解像×衛星画像でできること。関連論文の紹介とTellusでやるには

衛星画像を超解像することでどのようなことができるようになるのか、論文も合わせてご紹介。Tellusでの衛星画像の超解像方法についても解説するので、ぜひチャレンジをしてみてください!

機械学習

第1回衛星データ解析コンテスト、上位3名の解析手法と第2回への期待

2018年12月18日に行われた第1回衛星データコンテスト「Tellus Satellite Challenge」の結果発表。本記事ではコンテストの運営を行う株式会社SIGNATEの齊藤さんに解説いただいた上位3名の解析手法と講評をご紹介します。

機械学習

論文解説:リモートセンシングにおける深層学習のトレンド

「リモセンと深層学習の課題とトレンド」を知る上で、よくまとまっている2017年の論文"Deep learning in remote sensing: A comprehensive review and list of resources."がありましたので、この論文の解説をします。

機械学習

成功!!複素ニューラルネットワーク(CxNN)を実装して衛星データから物体検出をしてみる

単なる画像としてではなく、電波の位相情報も取り扱うために複素ニューラルネットワークを用いて、SARデータの物体検出を行います。